Chemical modification of α_2 -macroglobulin to generate derivatives that bind transforming growth factor- β with increased affinity

Donna J. Webb, Steven L. Gonias*

Departments of Pathology and Biochemistry, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA

Received 5 February 1997

Abstract α_2 -Macroglobulin ($\alpha_2 M$) binds a number of cytokines, including transforming growth factor-β1 (TGF-β1) and TGF- β 2. The affinity of these interactions depends on the α_2 M conformation. In this investigation, we treated human $\alpha_2 M$ with cis-dichlorodiammineplatinum (II) (cis-Pt), a crosslinking reagent that partially 'locks' the \(\alpha_2 M\) conformation, and then with methylamine to generate a preparation (α_2 M-P/M) consisting of stable $\alpha_2 M$ conformational intermediates. $\alpha_2 M$ -P/M bound TGF-\beta1 and TGF-\beta2 with higher affinity than any other form of α₂M studied to date. The equilibrium dissociation constants were 14 and 2 nM for TGF- β 1 and TGF- β 2, respectively. α_2 M-P/M, at 100 nM, neutralized the activity of TGF-\(\beta\)1 by about 75% in an endothelial cell proliferation assay. The equivalent concentration of native $\alpha_2 M$ or methylamine-modified $\alpha_2 M$ had no effect. These studies demonstrate that the potential of $\alpha_2 M$ as a cytokine carrier and neutralizer may not be fully realized in either the native or completely activated conformations.

© 1997 Federation of European Biochemical Societies.

Key words: $α_2$ -macroglobulin; Transforming growth factor-β; Cytokine; Endothelium

1. Introduction

 α_2 -Macroglobulin ($\alpha_2 M$) is a naturally occurring protein in the blood which functions not only as a proteinase inhibitor but also as a carrier of specific cytokines, including transforming growth factor- β 1 (TGF- β 1), platelet-derived growth factor-BB, and nerve growth factor- β [1,2]. The binding affinities of $\alpha_2 M$ for different cytokines vary widely and are not always affected similarly when the $\alpha_2 M$ is modified by proteinases [1–3]. Many cytokines do not bind to $\alpha_2 M$ at all, including PDGF-AA, interferon- γ , colony stimulating factor-1, and ciliary neurotrophic factor [1,2,4,5]. Thus, $\alpha_2 M$ may function to neutralize cytokines, with partial specificity, in normal homeostasis and in select disease states.

 $\alpha_2 M$ in the blood is almost entirely in the native conformation. This form of $\alpha_2 M$ is fully functional as a proteinase inhibitor but not recognized by cellular receptors [6]. When treated with small primary amines, such as methylamine, native $\alpha_2 M$ undergoes a major conformational change [7,8]. The resulting structure, which is referred to as activated $\alpha_2 M$, retains no proteinase inhibitory activity but is recognized by $\alpha_2 M$ -specific receptors, primarily in the liver, and thus rapidly cleared from the circulation [6]. Many proteinases induce a conformational change in $\alpha_2 M$ which is equivalent to that caused by methylamine [9,10]; however, before adopting the 'fully activated' conformation, the $\alpha_2 M$ apparently transitions

*Corresponding author. Fax: (1) (804) 924-8060. E-mail: SLG2t@VIRGINIA.edu

through a series of variably stable structural intermediates [11–15].

Very little is known about cytokine binding to $\alpha_2 M$ conformational intermediates; however, these intermediates may be identified as a small sub-population within purified native $\alpha_2 M$ preparations [16,17]. In the present investigation, we utilized an $\alpha_2 M$ chemical modification protocol which has been previously characterized for its potential to stabilize $\alpha_2 M$ conformational intermediates [12,18]. The protocol utilizes the reagent, *cis*-dichlorodiammineplatinum (II) (*cis*-Pt), as an amino acid side-chain crosslinker to partially lock the $\alpha_2 M$ conformation prior to adding methylamine. Treatment of *cis*-Pt-modified $\alpha_2 M$ with methylamine results in only partial reorganization of the $\alpha_2 M$ structure, as determined by nondenaturing PAGE, electron microscopy, and receptor recognition experiments [12,13,18,19].

The studies presented here demonstrate that $\alpha_2 M$, modified with cis-Pt and methylamine, binds TGF- $\beta 1$ and TGF- $\beta 2$ with higher affinity than any other $\alpha_2 M$ preparation studied to date. To confirm the results of our equilibrium cytokine-binding analyses, we performed endothelial cell proliferation assays. TGF- $\beta 1$ inhibited endothelial cell growth as expected and $\alpha_2 M$ -P/M neutralized this activity while native $\alpha_2 M$ and $\alpha_2 M$ -methylamine, at the equivalent concentration, were ineffective.

2. Materials and methods

2.1. Materials

Porcine TGF-β1, which is identical in sequence to human TGF-β1, was from R&D Systems (Minneapolis, MN, USA). Human TGF-β2 was from Genzyme (Cambridge, MA, USA). TGF-β1 and TGF-β2 was from Genzyme (Cambridge, MA, USA). TGF-β1 and TGF-β2 were radioiodinated according to the method of Ruff and Rizzino [20]. Specific activities were 100–200 μCi/μg. Methylamine-HCl, chloramine-T, bovine serum albumin (BSA) and fetal bovine serum were from Sigma (St. Louis, MO, USA). Dulbecco's modified Eagle's medium (DMEM), trypsin-EDTA, and Earle's balanced salts solution were from GIBCO BRL (Gaithersburg, MD, USA). Na¹²⁵I was from Amersham (Arlington Heights, IL, USA). Acidic fibroblast growth factor and basic fibroblast growth factor were from Promega (Madison, WI, USA). Bis(sulfosuccinimidyl) suberate (BS³) and Iodobeads were from Pierce (Rockford, IL, USA). Cis-Pt was from Aldrich (Milwaukee, WI, USA).

2.2. Preparation of $\alpha_2 M$ and $\alpha_2 M$ derivatives

 $\alpha_2 M$ was purified from human plasma by the method of Imber and Pizzo [21]. The concentration of $\alpha_2 M$ was determined by measuring the absorbance at 280 nm, using an $A_{1\%,1\mathrm{cm}}$ of 8.93 [22]. All purified native $\alpha_2 M$ preparations were screened for the presence of trace levels of partially activated forms by incubation with $^{125}\text{I-TGF-}\beta l$ followed by nondenaturing PAGE, as previously described [17]. Any native $\alpha_2 M$ preparations that showed TGF- βl -binding to $\alpha_2 M$ species with increased mobility were discarded.

 $\alpha_2 M$ -MA was prepared by dialyzing native $\alpha_2 M$ against 200 mM methylamine-HCl in 50 mM Tris-HCl, pH 8.2, for 12 h at 22°C, followed by extensive dialysis against 20 mM sodium phosphate,

150 mM NaCl, pH 7.4 (PBS) at 4°C. Complete modification of native $\alpha_2 M$ by methylamine was confirmed by loss of trypsin binding activity (>96%) [23] and by the characteristic increase in mobility by nondenaturing PAGE [24,25].

 α_2 M-P was prepared by reacting native α_2 M with 1.6 mM *cis*-Pt for 6 h at 37°C. Unreacted *cis*-Pt was removed by extensive dialysis against PBS. α_2 M-P/M was prepared by dialyzing α_2 M-P against 200 mM methylamine-HCl in 50 mM Tris-HCl, pH 8.2, for 12 h at 22°C, followed by extensive dialysis against PBS.

2.3. Determination of apparent equilibrium dissociation constants

Equilibrium dissociation (K_d) constants were determined by the BS³-rapid crosslinking method, as has been described by our laboratory [1,2,5,26]. Cytokine-binding to $\alpha_2 M$ is modeled as a two-step reaction:

$$A + C \stackrel{k_1}{\rightleftharpoons} AC \stackrel{k_2}{\longrightarrow} AC^* \tag{1}$$

A is unbound α_2M , C is unbound cytokine, AC is reversibly associated (noncovalent) α_2M -cytokine complex, and AC* is irreversibly associated (covalent) α_2M -cytokine complex, formed by thiol-disulfide exchange. For TGF- β 1 and TGF- β 2, reversible binding to α_2M occurs fairly rapidly and k_2 is sufficiently small so that it may be ignored in the determination of K_D values [2].

In the experiments presented here, various concentrations of α_2 M-P or α_2 M-P/M (0.002–2.5 μ M) were incubated with ¹²⁵I-TGF- β 1 or ¹²⁵I-TGF-β2 (1.0 nM) in PBS with 75 μM BSA, for 30 min at 37°C. The rapid-crosslinking agent, BS3 (in H2O), was then added at a final concentration of 5 mM for 1 min. For each α₂M concentration, an identical control incubation was treated with vehicle (H₂O) instead of BS³. Crosslinking reactions were terminated instantaneously by acidification [4]. Samples were then denatured in 2.0% SDS for 30 min at 37°C, supplemented with Tris-HCl (100 mM) and glycerol (10%), and subjected to SDS-PAGE. The gels were sliced into 3 mm sections and the radioactivity content of each section was determined in a gamma counter. $^{125}\text{I-Cytokine}$ recovered in association with $\alpha_2 M~(\textit{AC}_e)$ included BS3-stabilized AC and AC*. Free cytokine (in the gels) (Ce) included C plus AC which was not BS3-stabilized. AC* was quantitated independently by SDS-PAGE analysis of samples that were not BS³-treated. Apparent K_d values were determined according to the

$$\frac{C_{\rm e}}{AC_{\rm e}} = \left(\frac{K_{\rm d}}{z}\right) \left(\frac{1}{A}\right) + \left(\frac{1}{z} - 1\right) \tag{2}$$

z is the BS³-crosslinking efficiency, a constant (0 < z < 1) for each cytokine and $\alpha_2 M$ derivative which does not vary as a function of the $\alpha_2 M$ concentration. AC_e is related to AC by the relationship: $[AC_e] = z[AC]$. Assumptions involved in the use of this method have been reviewed [1,2]. These include that the K_D value reflects a single cytokine-binding site per $\alpha_2 M$ and that all of the $\alpha_2 M$ in a given preparation binds cytokine with equal affinity.

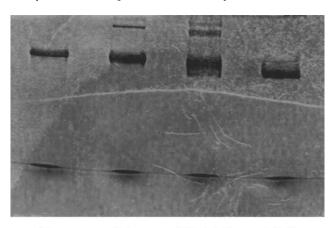
The methods for preparing α_2 M-P and α_2 M-P/M involve the binding of an average of 17 mol platinum per mol of α_2 M [12]. Since there is almost certainly heterogeneity in the extent of platinum binding and because the amino acids modified probably vary, α_2 M-P and α_2 M-P/M must be viewed as heterogeneous preparations in which different molecules may bind ¹²⁵I-TGF- β with different affinities. Each K_d value determined for α_2 M-P/M, by the BS³-rapid crosslinking method, is a preparation-averaged constant, related to the different K_d values of n different α_2 M species (A_i) by the following equation:

$$\frac{1}{K_{\rm d}} = \frac{1}{K_{\rm d_1}} - \frac{\sum_{i=2}^{n} A_{\rm i}}{K_{\rm d_1} A_{\rm T}} + \frac{1}{K_{\rm d_2}} - \frac{\sum_{i=1,3}^{n} A_{\rm i}}{K_{\rm d_2} A_{\rm T}} + \frac{1}{K_{\rm d_3}} - \frac{\sum_{i=1,2,4}^{n} A_{\rm i}}{K_{\rm d_3} A_{\rm T}} + \dots$$
(3)

 $A_{\rm T}$ is the total concentration of all $\alpha_2{\rm M}$ species in the preparation (sum of $A_{\rm i}$). As an example, if an $\alpha_2{\rm M}$ preparation consists of two species in equal proportion, which bind a given cytokine with $K_{\rm d}$ values of 100 and 500 nM, then the preparation-averaged $K_{\rm d}$ value would be 167 nM. When multiple species are present in an $\alpha_2{\rm M}$ preparation, plots of $C_{\rm e}/AC_{\rm e}$ against $1/[A_{\rm T}]$ (according to Eq. 2) remain linear. Preparation-averaged $K_{\rm d}$ values are not affected by differences in the BS³-crosslinking efficiencies (z values) amongst various $\alpha_2{\rm M}$ species within a given preparation.

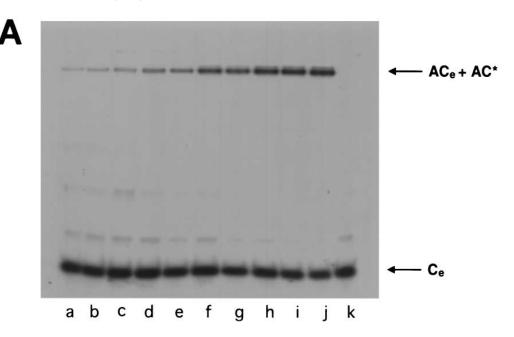
2.4. Inhibition of endothelial cell growth

FBHE cells were maintained in DMEM supplemented with 10% FBS, 20 ng/ml acidic fibroblast growth factor, and 80 ng/ml basic fibroblast growth factor. Cultures were passaged at subconfluence with trypsin-EDTA. FBHE cell proliferation assays were performed in dilute (0.2%) serum as previously described [26,27]. Briefly, FBHE cells were plated in 24-well culture plates (2×10⁴ cells/well) and incubated in DMEM with 10% FBS for 15 h. After washing, fresh DMEM, supplemented with 0.2% FBS and TGF- β 1, was added. Some cultures were simultaneously treated with native α_2 M, α_2 M-P, α_2 M-P/M, or α_2 M-MA. After incubation for 30 h, [3 H]thymidine was added for an additional 18 h. The cells were then harvested and radioactivity incorporation was measured in a scintillation counter.


3. Results

3.1. Nondenaturing PAGE analysis of the $\alpha_2 M$ derivatives

Nondenaturing PAGE is commonly used to analyze $\alpha_2 M$ conformation [24,25]. Fig. 1 shows a representative nondenaturing PAGE experiment in which the four $\alpha_2 M$ preparations were compared. Native $\alpha_2 M$ migrated in a single Coomassiestained band. The mobility of methylamine-modified $\alpha_2 M$ was increased compared with that of native $\alpha_2 M$ reflecting the transition to the fully activated conformation. As expected, the mobility of $\alpha_2 M$ -P/M was intermediate between native $\alpha_2 M$ and $\alpha_2 M$ -MA, reflecting partial conformational change [12,18]. The low mobility bands in the $\alpha_2 M$ -P and $\alpha_2 M$ -P/M preparations suggest some intermolecular $\alpha_2 M$ -crosslinking, due to the high concentration of cis-Pt used.


3.2. Equilibrium binding of 125 I-cytokines to α_2M -P and α_2M -P/M

The BS³-rapid crosslinking method was used to determine $K_{\rm d}$ values for the binding of 125 I-TGF- β 1 and 125 I-TGF- β 2 to α_2 M-P and α_2 M-P/M. In preliminary time-course experiments, noncovalent binding of each cytokine to the modified α_2 M derivatives maximized within 15 min (results not shown). Fig. 2A shows a representative autoradiograph in which 125 I-TGF- β 1 was incubated with various concentrations of α_2 M-P for 30 min, and then with BS³. The amount of 125 I-TGF- β 1- α_2 M-P complex detected was dependent on the α_2 M-P concentration. In the control gel, which contained samples that were treated with vehicle instead of BS³, the amount of 125 I-TGF- β 1- α_2 M-P complex was consistently less than 20% of

N P P/M MA

Fig. 1. Nondenaturing PAGE analysis of $\alpha_2 M$ derivatives. Native $\alpha_2 M$ (N), $\alpha_2 M$ -P (P), $\alpha_2 M$ -P/M (P/M) and $\alpha_2 M$ -MA (MA) are shown. The gel was stained with Coomassie blue R-250.

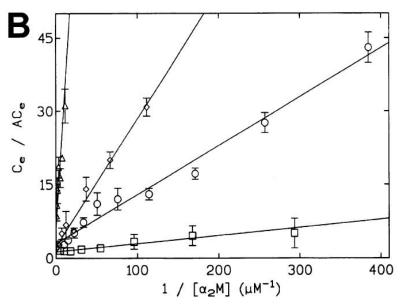


Fig. 2. Equilibrium binding of 125 I-TGF- β 1 to α_2 M-P and α_2 M-P/M. 125 I-TGF- β 1 was incubated with α_2 M-P for 30 min at 37°C. The samples were pulse-exposed to 5 mM BS³ and subjected to SDS-PAGE and autoradiography. The autoradiograph of a representative gel is shown in (A). The concentrations of α_2 M-P were 2 nM (lane a), 4 nM (lane b), 6 nM (lane c), 9 nM (lane d), 13 nM (lane e), 20 nM (lane f), 30 nM (lane g), 45 nM (lane h), 67 nM (lane i), 0.1 μ M (lane j), and 0 nM (lane k). The terms, AC_e, AC*, and C_e are defined in the text. B: Results of BS³-rapid crosslinking studies analyzing the binding of TGF- β 1 to native α_2 M (Δ), α_2 M-P/M (\square) and α_2 M-MA (\diamondsuit). The results of four separate experiments were averaged and plotted according to Eq. 2 in the text.

that detected with BS³ (not shown). Thus, AC^* represented only a small fraction of the covalent α_2M -P-TGF- β 1 complex recovered after BS³ treatment. Similar results were obtained when α_2M -P/M was substituted for α_2M -P and when TGF- β 2 was studied.

Fig. 2B shows plots of C_e/AC_e against $1/A_T$ for the binding of $^{125}\text{I-TGF-}\beta 1$ to native $\alpha_2\text{M}$, $\alpha_2\text{M-P}$, $\alpha_2\text{M-P/M}$ and $\alpha_2\text{M-MA}$. The presented graphs were generated from the results of at least four separate experiments. Individual experiments, with TGF- $\beta 1$ and TGF- $\beta 2$, were analyzed using similar plots,

Table 1 Equilibrium dissociation constants for 125 I-TGF- β -binding to $\alpha_2 M$

Cytokine	$\alpha_2 \overline{M-P}$ (nM)	α ₂ M-P/M (nM)	Native α ₂ M (nM)	α ₂ M-MA (nM)
TGF-β1 TGF-β2	36 ± 2	14 ± 4 2 ± 1	320 ± 65 14 ± 3	82 ± 6 15 ± 2

Results were determined using the BS³-rapid crosslinking method. Each value represents the mean \pm SE (n = 4). The K_d values for the binding of each cytokine to native α_2 M and α_2 M-MA have been presented previously [1,2].

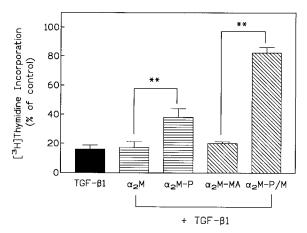


Fig. 3. Effects of $\alpha_2 M$ on TGF- $\beta 1$ activity in an endothelial cell proliferation assay. FBHE cells were incubated with 10 pM TGF- $\beta 1$ in the presence and absence of 100 nM native $\alpha_2 M$, $\alpha_2 M$ -P, $\alpha_2 M$ -MA, or $\alpha_2 M$ -P/M. The culture medium contained 0.2% FBS. After 30 h, 1 μ Ci/ml [3 H][thymidine was added to the cultures for an additional 18 h. [3 H][Thymidine incorporation was then determined and expressed as a percentage of that observed in control cultures, which were not exposed to $\alpha_2 M$ or TGF- $\beta 1$. **Statistically significant differences (P < 0.005).

which were all apparently linear, as expected. K_d values from individual experiments were averaged to obtain the constants presented in Table 1. Binding constants for the interaction of TGF- β 1 and TGF- β 2 with native α_2 M and α_2 M-MA have been presented previously [2].

As shown in Table 1, α_2 M-P/M and α_2 M-P bound TGF- β 1 with higher affinity than α_2 M-MA. The K_d for the binding of TGF- β 1 to α_2 M-P/M (14 nM) was decreased by a factor of 23 compared with the K_d for TGF- β 1 binding to native α_2 M (320 nM). The K_d for the binding of TGF- β 2 to α_2 M-P/M (2 nM) is the lowest binding constant reported for any cytokine and any α_2 M derivative studied to date.

3.3. $\alpha_2 M$ -P and $\alpha_2 M$ -P/M counteract the activity of TGF- β in cell culture

TGF-β inhibits FBHE proliferation in cell culture and this activity is counteracted by $\alpha_2 M$ [26,27]. Experiments with a variety of human α₂M derivatives and α-macroglobulins from different species have shown that the fraction of TGF-\beta activity neutralized directly correlates with the affinity of the αmacroglobulin/TGF- β interaction [3,26,27]. Since the K_d values determined for cytokine binding to α_2 M-P and α_2 M-P/M were preparation-averaged values, we wished to confirm that these constants accurately predict the cytokine-binding and/or -neutralizing activities of the $\alpha_2 M$ preparations. Fig. 3 shows the results of FBHE proliferation experiments in which 10 pM TGF-β1 inhibited [³H]thymidine incorporation by an average of 84%. A fairly low concentration of each $\alpha_2 M$ derivative (100 nM) was added to different FBHE cultures such that high-affinity TGF-β-α₂M interactions would be selectively detected. As expected, native α₂M did not significantly affect [3 H]thymidine incorporation while α_{2} M-MA had only a small effect which was not statistically significant at the P < 0.05level. By contrast, α_2 M-P substantially reversed the growth inhibition caused by TGF-β1 and α₂M-P/M was even more effective. The 'double-stars' in Fig. 3 indicate statistically significant differences at the P < 0.005 level. The results of these FBHE growth inhibition studies confirm that the $K_{\rm d}$ values, determined by the BS³-rapid crosslinking method, accurately predict the TGF- β -neutralizing activities of the modified α_2M preparations, even though these preparations are heterogeneous

4. Discussion

Native $\alpha_2 M$ functions as a physiologically significant carrier of TGF- β in the blood [1]. Circulating $\alpha_2 M$ -TGF- β complexes are mostly noncovalent and reversible [28,29]. Thus, $\alpha_2 M$ may provide a stable pool of slowly releasable cytokine activity, in the plasma, under normal homeostatic conditions. At sites of inflammation or other pathological processes that occur in tissue, concentrations of TGF- β isoforms may be in rapid flux and $\alpha_2 M$ may serve to buffer cells against the full impact of changing TGF- β activity. Cell culture experiments, in which cells are exposed to a bolus of cytokine or allowed to respond to autocrine-secreted cytokines, probably model the microenvironment of tissues more closely than plasma. In these in vitro systems, $\alpha_2 M$ has been shown to regulate cellular growth and gene expression by binding TGF- β [26,27,30,31].

The binding affinity of $\alpha_2 M$ for TGF- β isoforms and other cytokines is dependent on the conformational state of the $\alpha_2 M$ [1]. While most previous studies have been conducted using native $\alpha_2 M$ or fully activated, methylamine-modified $\alpha_2 M$, the studies presented here demonstrate that neither of these well-studied $\alpha_2 M$ conformations have optimized cytokine binding activity. $\alpha_2 M$ -P and $\alpha_2 M$ -P/M bound TGF- β 1 and TGF- β 2 with higher affinity than previously studied forms of $\alpha_2 M$. The same derivatives also neutralized the activity of TGF- β 1 in FBHE proliferation assays, confirming the validity of the K_d values, determined by the BS³-rapid crosslinking method. Thus, these chemically modified $\alpha_2 M$ derivatives represent superior TGF- β -binding agents.

Based on hydrodynamic and electron microscopy studies, we previously proposed that α_2 M-P/M may model intermediates which occur transiently during α_2 M conformational change in vivo [12,13,18,19]. However, electron microscopy images of α_2 M-P already show some changes in structure compared with native α_2 M [12]. Thus, the model of *cis*-Pt as an α_2 M 'conformational lock' may be oversimplified. The increased TGF- β -binding affinity of α_2 M-P, compared with native α_2 M, supports the hypothesis that *cis*-Pt alone induces some changes in the structure of α_2 M that are yet to be defined.

In conclusion, we have shown that the TGF- β -binding activity of $\alpha_2 M$ can be modified by reagents which alter the conformation of the molecule. The newly described derivatives may be useful as TGF- β -activity modifiers in vitro and in vivo. Whether the same $\alpha_2 M$ modification protocol will enhance binding of other cytokines remains to be determined.

Acknowledgements: This work was supported in part by National Institutes of Health Grant CA-53462. D. Webb is a fellow of the American Heart Association, Virginia Affiliate. The authors would like to thank Janice Wen for excellent technical assistance.

References

 Gonias, S.L., LaMarre, J., Crookston, K.P., Webb, D.J., Wolf, B.B., Lopes, M.B.S., Moses, H.L. and Hayes, M.A. (1994) Ann. NY Acad. Sci. 737, 273–290.

- [2] Crookston, K.P., Webb, D.J., Wolf, B.B. and Gonias, S.L. (1994) J. Biol. Chem. 269, 1533–1540.
- [3] Webb, D.J., Weaver, A.M., Atkins-Brady, T.A. and Gonias, S.L. (1996) Biochem. J. 320, 551–555.
- [4] Bonner, J.C. and Osornio-Vargas, A.-R. (1995) J. Biol. Chem. 270, 16236–16242.
- [5] Wolf, B.B. and Gonias, S.L. (1994) Biochemistry 33, 11270– 11277
- [6] S.V. Pizzo, S.L. Gonias, in: P.M. Conn (Ed.), The Receptors. Vol. 1. Academic Press, Orlando, FL, 1984, pp. 178–221.
- [7] Sottrup-Jensen, L., Petersen, T.E. and Magnusson, S. (1980) FEBS Lett. 121, 275–279.
- [8] Howard, J.B. (1981) Proc. Natl. Acad. Sci. USA 78, 2235-2239.
- [9] Gonias, S.L., Reynolds, J.A. and Pizzo, S.V. (1982) Biochim. Biophys. Acta 705, 306–314.
- [10] Björk, I. and Fish, W.W. (1982) Biochem. J. 207, 347-356.
- [11] Strickland, D.K., Steiner, J.P., Migliorini, M. and Battey, F.D. (1988) Biochemistry 27, 1458–1466.
- [12] Gonias, S.L. and Figler, N.L. (1989) J. Biol. Chem. 264, 9565– 9570.
- [13] Marshall, L.B., Figler, N.L. and Gonias, S.L. (1992) J. Biol. Chem. 267, 6347–6352.
- [14] Steiner, J.P., Bhattacharya, P. and Strickland, D.K. (1985) Biochemistry 24, 2993–3001.
- [15] Roche, P.A. and Pizzo, S.V. (1988) Arch. Biochem. Biophys. 267, 285–293.
- [16] Borth, W. (1994) Ann NY Acad. Sci. 737, 267-272.
- [17] LaMarre, J., Hayes, M.A., Wollenberg, G.K., Hussaini, I., Hall, S.W. and Gonias, S.L. (1991) J. Clin. Invest. 78, 39-44.

- [18] Gonias, S.L. and Pizzo, S.V. (1981) J. Biol. Chem. 256, 12478– 12484.
- [19] Gonias, S.L. and Pizzo, S.V. (1984) Ann. NY Acad. Sci. 421, 457–471.
- [20] Ruff, E. and Rizzino, A. (1986) Biochem. Biophys. Res. Commun. 138, 714–719.
- [21] Imber, M.J. and Pizzo, S.V. (1981) J. Biol. Chem. 256, 8134–8139.
- [22] Hall, P.K. and Roberts, R.C. (1978) Biochem. J. 173, 27-38.
- [23] Ganrot, P.O. (1967) Clin. Chim. Acta 16, 328-330.
- [24] Barrett, A.J., Brown, M.A. and Sayers, C.A. (1979) Biochem. J. 181, 401-418.
- [25] Van Leuven, F., Cassiman, J.-J. and Van den Berghe, H. (1981)J. Biol. Chem. 256, 9016–9022.
- [26] Webb, D.J., Atkins, T.L., Crookston, K.P., Burmester, J.K., Qian, S.W. and Gonias, S.L. (1994) J. Biol. Chem. 269, 30402– 30406.
- [27] Burmester, J.K., Qian, S.W., Roberts, A.B., Huang, A., Amatayakul-Chantler, S., Suardet, L., Odartchenko, N., Madri, J.A. and Sporn, M.B. (1993) Proc. Natl. Acad. Sci. USA 90, 8628–8632.
- [28] Philip, A. and O'Connor-McCourt, M. (1991) J. Biol. Chem. 266, 22290–22296.
- [29] Crookston, K.P., Webb, D.J., LaMarre, J. and Gonias, S.L. (1993) Biochem. J. 293, 443–450.
- [30] Lysiak, J.J., Hussaini, I.M., Webb, D.J., Glass II, W.J., Allietta, M. and Gonias, S.L. (1995) J. Biol. Chem. 270, 21919–21927.
- [31] Weaver, A.M., Owens, G.K. and Gonias, S.L. (1995) J. Biol. Chem. 270, 30741–30748.